Effective Chabauty for Symmetric Powers of Curves

نویسندگان

  • Jennifer Mun Young
  • Bjorn Poonen
  • Alexei Borodin
  • Manjul Bhargava
  • Kirsten Eisentraeger
  • Andrew Granville
  • Jochen Koenigsmann
  • Barry Mazur
  • Joseph Rabinoff
  • Sug Woo
  • Michael Stoll
  • Bernd Sturmfels
  • Bianca Viray
چکیده

Faltings' theorem states that curves of genus g > 2 have finitely many rational points. Using the ideas of Faltings, Mumford, Parshin and Raynaud, one obtains an upper bound on the upper bound on the number of rational points [Szp85], XI, §2, but this bound is too large to be used in any reasonable sense. In 1985, Coleman showed [Col85] that Chabauty's method, which works when the Mordell-Weil rank of the Jacobian of the curve is smaller than g, can be used to give a good effective bound on the number of rational points of curves of genus g > 1. We draw ideas from nonarchimedean geometry to show that we can also give an effective bound on the number of rational points outside of the special set of Symd X, where X is a curve of genus g > d, when the Mordell-Weil rank of the Jacobian of the curve is at most g d. Thesis Supervisor: Bjorn Poonen Title: Professor

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chabauty for Symmetric Powers of Curves

Let C be a smooth projective absolutely irreducible curve of genus g ≥ 2 over a number field K, and denote its Jacobian by J . Let d ≥ 1 be an integer and denote the d-th symmetric power of C by C(d). In this paper we adapt the classic Chabauty–Coleman method to study the K-rational points of C(d). Suppose that J(K) has Mordell–Weil rank at most g− d. We give an explicit and practical criterion...

متن کامل

Second symmetric powers of chain complexes

We investigate Buchbaum and Eisenbud's construction of the second symmetric power $s_R(X)$ of a chain complex $X$ of modules over a commutative ring $R$. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following vers...

متن کامل

Chabauty and the Mordell-Weil Sieve

These notes are based on lectures given at the “Arithmetic of Hyperelliptic Curves” workshop, Ohrid, Macedonia, 28 August–5 September 2014. They offer a brief (if somewhat imprecise) sketch of various methods for computing the set of rational points on a curve, focusing on Chabauty and the Mordell–Weil sieve.

متن کامل

Coverings of Curves of Genus 2

We shall discuss the idea of finding all rational points on a curve C by first finding an associated collection of curves whose rational points cover those of C. This classical technique has recently been given a new lease of life by being combined with descent techniques on Jacobians of curves, Chabauty techniques, and the increased power of software to perform algebraic number theory. We shal...

متن کامل

Symmetric powers and the Satake transform

‎This paper gives several examples of the basic functions‎ ‎introduced in recent years by Ng^o‎. ‎These are mainly‎ ‎conjectures based on computer experiment‎.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014